PUBLICATIONS

(# Equal contribution, * Corresponding author)
  • 52. Single-molecule insight into α-synuclein fibril structure and mechanics modulated by chemical compounds
    Li, X.#, Bi, L.L.#, Zhang, S.Q., Xu, Q.H., Xia, W.C., Tao, Y.Q., Li, Y.N., Li, D., Sun, B.*, and Liu, C.*Advanced Science, in revision. (Link)
  • 51. CRISPR-AsCas12f1 couples out-of-protospacer DNA unwinding with exonuclease activity in the sequential target cleavage
    Song, X.X.#, Chen, Z.T.#, Sun, W.J., Yang, H., Guo, L.J., Zhao, Y.L., Li, Y.N., Ren, Z.Y., Shi, J., Liu, C., Ma, P.X., Huang, X.X., Ji, Q.J., and Sun, B.*Nucleic Acids Research 52, 10357-10368. (2024). (Link)
  • 50. Inhibitor development for α-synuclein fibril’s disordered region to alleviate Parkinson’s Disease pathology
    Zhang, S.Q.#, Xiang, H.J.#, Tao, Y.Q.#, Li, J.#, Zeng, S.Y., Xu, Q.H., Xiao, H.N., Lv, S.R., Song, C.W., Cheng, Y., Li, M., Zhu, Z.Y., Zhang, S.N., Sun, B., Li, D., Xiang, S.Q.*, Tan, L.*, and Liu, C.*Journal of the American Chemical Society 146, 28282-28295. (2024). (Link)
  • 49. α-Synuclein amyloid fibril directly binds to LC3B and suppresses SQSTM1/p62-mediated selective autophagy
    Xu, Q.H.#, Wang, H.L.#, Yang, R.N., Tao, Y.Q., Wang, Z.Y., Zhang, S.N., Sun, B., Li, D., Lu, B.X.*, and Liu, C.*Cell Research 34, 900-904. (2024). (Link)
  • 48. Dynamic phosphorylation of FOXA1 by Aurora B guides post-mitotic gene reactivation
    Zhang, T.#, Liu, S.Y.#, Durojaye, O., Xiong, F.Y., Fang, Z.Y., Ullah, T., Fu, C.H., Sun, B., Jiang, H., Xia, P., Wang, Z.K.*, Yao, X.B.*, and Liu, X.*Cell Reports 43, 114739. (2024). (Link)
  • 47. RPA transforms RNase H1 to a bidirectional exonuclease for efficient RNA–DNA hybrid cleavage
    Li, Y.N.#, Liu, C.#, Jia, X.S., Bi, L.L., Ren, Z.Y., Zhao, Y.L., Zhang, X., Guo, L.J., Bao, Y.L., Liu, C., Li, W.*, and Sun, B.*Nature Communications 15, 7464. (2024). (Link)
  • 46. Binding adaptability of chemical ligands to polymorphic α-synuclein fibril structures
    Liu, K.E.#, Tao, Y.Q.#, Zhao, Q.Y., Xia, W.C., Li, X., Zhang, S.Q., Yao, Y.X., Xiang, H.J., Han, C., Tan, L., Sun, B., Li, D., Li, A., and Liu, C.*Proceedings of the National Academy of Sciences 121, e2321633121. (2024). (Link)
  • 45. Phase-separated ParB enforces diverse DNA compaction modes and stabilizes the parS-centered partition complex
    Zhao, Y.L.#, Guo, L.J.#, Hu, J.J.#, Ren, Z.Y., Li, Y.N., Hu, M., Zhang, X., Bi, L.L., Li, D., Ma, H.H., Liu, C.*, and Sun, B.*Nucleic Acids Research 52, 8385-8398. (2024). (Link)
  • 44. A Tau PET tracer PBB3 binds to TMEM106B amyloid fibril in brain
    Zhao, Q.Y.,#, Fan, Y.#, Zhao, W.B., Ni, Y., Tao, Y.Q., Bian, J., Xia, W.C., Yu, W.B, Fan, Z., Liu, C., Sun, B., Le, W.D., Li, W.S., Wang, J.*, and Li, D.*Cell Discovery 10, 50. (2024). (Link)
  • 43. Single-molecule assay guided crRNA optimization enhances specific microRNA detection by CRISPR-Cas12a
    Chen, K.Z.#, Sun, W.J.#, Zhong, M.T.#, Xie, J.Q., Hou, Y.K., Lu, X.Q., Chen, Z.T., Sun, B., Huang, X.X., Wang, X.J.*, Liu, M.*, Ma, X.D.*, and Ma, P.X.*Sensors and Actuators: B. Chemical 406, 135389. (2024). (Link)
  • 42. Cryo-EM structures reveal variant Tau amyloid fibrils between the rTg4510 mouse model and sporadic human tauopathies
    Zhao, W.B.#, Liu, K.E.#, Fan, Y.#, Zhao, Q.Y., Tao, Y.Q., Zhang, M.W., Gan, L.H., Yu, W.B., Sun, B., Li, D., Liu, C.*, and Wang, J.*Cell Discovery 10, 27. (2024). (Link)
  • 41. Joint efforts of replicative helicase and SSB ensure inherent replicative tolerance of G-quadruplex
    Guo, L.J.#, Bao, Y.L.#, Zhao, Y.L., Ren, Z.Y., Bi, L.L., Zhang, X., Liu, C., Hou, X.M., Wang, M.D., and Sun, B.*Advanced Science 11, 2307696. (2024). (Link)
  • 40. Enlarged DNA unwinding by Nme2Cas9 permits a broadened editing window beyond the protospacer
    Chen, Z.T.#, Li, X.Y.#, Zhang, Q., Sun, W.J., Song, X.X., Zhang, X., Huang, X.X.*, and Sun, B.*Science China - Life Sciences 67, 424-427. (2024). (Link)
  • 39. RNase H1 facilitates recombinase recruitment by degrading DNA–RNA hybrids during meiosis
    Liu, C.#, Wang, L.Y.#, Li, Y.N.#, Guo, M.M., Hu, J., Wang, T., Li, M.J., Yang, Z., Lin, R.Y., Xu, W., Chen, Y.H., Luo, M.C., Gao, F., Chen, J.Y., Sun, Q.W., Liu, H.B., Sun, B.*, and Li, W.*Nucleic Acids Research 51, 7357-7375. (2023). (Link)
  • 38. Discrete RNA–DNA hybrid cleavage by the EXD2 exonuclease pinpoints two rate-limiting steps
    Jia, X.S.#, Li, Y.N.#, Wang, T., Bi, L.L., Guo, L.J., Chen, Z.T., Zhang, X., Ye, S.S., Chen, J., Yang, B., and Sun, B.*The EMBO Journal 42, e111703. (2023). (Link)
  • 37. Subtle change of fibrillation condition leads to substantial alteration of recombinant Tau fibril structure
    Li, X.#, Zhang, S.Q.#, Liu, Z.T.#, Tao, Y.Q., Xia, W.C., Sun, Y.P., Liu, C., Le, W.D., Sun, B., and Li, D.*iScience 25, 105645. (2022). (Link)
  • 36. Different intermolecular interactions drive nonpathogenic liquid-liquid phase separation and potentially pathogenic fibril formation by TDP-43
    Zeng, Y.T., Bi, L.L., Zhuo, X.F., Yang, L.Y., Sun, B., and Lu, J.X.*International Journal of Molecular Sciences 23, 15227. (2022). (Link)
  • 35. Bloom syndrome helicase compresses single-stranded DNA into phase-separated condensates
    Wang, T.#, Hu, J.J.#, Li, Y.N., Bi, L.L., Guo, L.J., Jia, X.S., Zhang, X., Li, D., Hou, X.M., Modesti, M., Xi, X.G., Liu, C.*, and Sun, B.*Angewandte Chemie International Edition 61, e202209463. (2022). (Link)
  • 34. Stochastically multimerized ParB orchestrates DNA assembly as unveiled by single-molecule analysis
    Guo, L.J.#, Zhao, Y.L.#, Zhang, Q., Feng, Y., Bi, L.L., Zhang, X., Wang, T., Liu, C., Ma, H.H., and Sun, B.*Nucleic Acids Research 50, 9294-9305. (2022). (Link)
  • 33. Simultaneous mechanical and fluorescence detection of helicase-catalyzed DNA unwinding
    Bi, L.L., Qin, Z.H., Hou, X.M., Modesti, M., and Sun, B.*Methods in Molecular Biology 2478, 329-347. (2022). (Link)
  • 32. PCDetection: PolyA-CRISPR/Cas12a-based miRNA detection without PAM restriction
    Zhong, M.T.#, Chen, K.Z.#, Sun, W.J., Li, X.Y., Huang, S.S., Meng, Q,Z., Sun, B., Huang, X.X.*, Wang, X.J.*, Ma, X.D.*, and Ma, P.X.*Biosensors and Bioelectronics 214, 114497. (2022). (Link)
  • 31. Structural mechanism underpinning Thermus oshimai Pif1-mediated G-quadruplex unfolding
    Dai, Y.X.#, Guo, H.L.#, Liu, N.N.#, Chen, W.F., Ai, X., Li, H.H., Sun, B., Hou, X.M.*, Rety, S.*, and Xi, X.G.*EMBO Reports 23, e53874. (2022). (Link)
  • 30. The convergence of head-on DNA unwinding forks induces helicase oligomerization and activity transition
    Bi, L.L.#, Qin, Z.H.#, Wang, T., Li, Y.N., Jia, X.S., Zhang, X., Hou, X.M., Modesti, M., Xi, X.G., and Sun, B.*Proceedings of the National Academy of Sciences 119, e2116462119. (2022). (Link)
  • 29. Remodeling the conformational dynamics of i-motif DNA by helicases in ATP-independent mode at acidic environment
    Gao, B., Zheng, Y.T., Su, A.M., Sun, B., Xi, X.G., and Hou, X.M.*iScience 25, 103575. (2022). (Link)
  • 28. Molecular mechanisms of Streptococcus pyogenes Cas9: a single-molecule perspective
    Zhang, Q., Chen, Z.T., and Sun, B.*Biophysics Reports 7, 475-489. (2021). (Link)
  • 27. Efficient DNA interrogation of SpCas9 governed by its electrostatic interaction with DNA beyond the PAM and protospacer
    Zhang, Q.#, Chen, Z.T.#, Wang, F.Z., Zhang, S.Q., Chen, H.Y., Gu, X.Y., Wen, F.C., Jin, J.C., Zhang, X., Huang, X.X., Shen, B.*, and Sun, B.*Nucleic Acids Research 49, 12433-12444. (2021). (Link)
  • 26. The hereditary mutation G51D unlocks a distinct fibril strain transmissible to wild-type α-synuclein
    Sun, Y.P.#, Long, H.F.#, Xia, W.C., Wang, K., Zhang, X., Sun, B., Cao, Q., Zhang, Y.Y., Dai, B., Li, D., and Liu, C.*Nature Communications 12, 6252. (2021). (Link)
  • 25. Replication protein A plays multifaceted roles complementary to specialized helicases in processing G-quadruplex DNA
    Wang, Y.R., Guo, T.T., Zheng, Y.T., Lai, C.W., Sun, B., Xi, X.G., and Hou, X.M.*iScience 24, 102493. (2021). (Link)
  • 24. Crystal structures of N-terminally truncated telomerase reverse transcriptase from fungi
    Zhai, L.T.#, Rety, S.#, Chen, W.F.#, Song, Z.Y., Auguin, D., Sun, B., Dou, S.X., and Xi, X.G.*Nucleic Acids Research 49, 4768-4781. (2021). (Link)
  • 23. The structure of a minimum amyloid fibril core formed by necroptosis-mediating RHIM of human RIPK3
    Wu, X.L.#, Ma, Y.Y.#, Zhao, K.#, Zhang, J., Sun, Y.P., Li, Y.C., Dong, X.Q., Hu, H., Liu, J., Wang, J., Zhang, X., Li, B., Wang, H.Y., Li, D., Sun, B., Lu, J.X.*, and Liu, C.*Proceedings of the National Academy of Sciences 118, e2022933118. (2021). (Link)
  • 22. Proximal single-stranded RNA destabilizes human telomerase RNA G-quadruplex and induces its distinct conformers
    Ye, S.S.#, Chen, Z.T.#, Zhang, X., Li, F.F., Guo, L.J., Hou, X.M., Wu, W.Q., Wang, J., Liu, C., Zheng, K., and Sun, B.*The Journal of Physical Chemistry Letters 12, 3361-3366. (2021). (Link)
  • 21. A novel partially-open state of SHP2 points to a “multiple gear” regulation mechanism
    Tao, Y.Q.#, Xie, J.F.#, Zhong, Q.L.#, Wang, Y.Y.#, Zhang, S.N., Luo, F., Wen, F.C., Xie, J.J., Zhao, J.W., Sun, X., Long, H.F., Ma, J.F., Zhang, Q., Long, J.G., Fang, X.Y., Lu, Y., Li, D., Li, M., Zhu, J.D., Sun, B., Li, G.H.*, Diao, J.J.*, and Liu, C.*Journal of Biological Chemistry 296, 100538. (2021). (Link)
  • 20. The nuclear localization sequence mediates hnRNPA1 amyloid fibril formation revealed by cryoEM structure
    Sun, Y.P.#, Zhao, K.#, Xia, W.C., Feng, G.Q., Gu, J.G., Ma, Y.Y., Gui, X.R., Zhang, X., Fang, Y.S., Sun, B., Wang, R.X., Liu, C.*, and Li, D.*Nature Communications 11, 6349. (2020). (Link)
  • 19. The HRDC domain oppositely modulates the unwinding activity of E. coli RecQ helicase on duplex DNA and G-quadruplex
    Teng, F.Y., Wang, T.T., Guo, H.L., Xin, B.G., Sun, B., Dou, S.X., Xi, X.G.*, and Hou, X.M.*Journal of Biological Chemistry 295, 17646-17658. (2020). (Link)
  • 18. Conformational dynamics of nonenveloped circovirus capsid to the host cell receptor
    Li, J.R.#, Gu, J.Y.#,*, Lin, C., Zhou, J.W., Wang, S.N., Lei, J., Wen, F.C., Sun, B., and Zhou, J.Y.*iScience 23, 101547. (2020). (Link)
  • 17. Dynamics of Staphylococcus aureus Cas9 in DNA target association and dissociation
    Zhang, S.Q.#, Zhang, Q.#, Hou, X.M., Guo, L.J., Wang, F.Z., Bi, L.L., Zhang, X., Li, H.H., Wen, F.C., Xi, X.G., Huang, X.X., Shen, B., and Sun, B.*EMBO Reports 21, e50184. (2020). (Link)
  • 16. Human RPA activates BLM’s bidirectional DNA unwinding from a nick
    Qin, Z.H.#, Bi, L.L.#, Hou, X.M., Zhang, S.Q., Zhang, X., Lu, Y., Li, M., Modesti, M., Xi, X.G.*, and Sun, B.*eLife 9, e54098. (2020). (Link)
  • 15. The post-PAM interaction of RNA-guided spCas9 with DNA dictates its target binding and dissociation
    Zhang, Q.#, Wen, F.C.#, Zhang, S.Q., Jin, J.C., Bi, L.L., Lu, Y., Li, M., Xi, X.G., Huang, X.X., Shen, B.*, and Sun, B.* Science Advances 5, eaaw9807. (2019). (Link)
  • 14. In vitro biochemical assays using biotin labels to study protein-nucleic acid interactions
    Yu, L.N.#, He, W.X.#, Xie, J.#, Guo, R.#, Ni, J., Zhang, X., Xu, Q.S., Wang, C.F., Yue, Q.L., Li, F.F., Luo. M.C., Sun, B.*, Ye, L.*, and Zheng, K.* Journal of Visualized Experiments 149, e59830. (2019). (Link)
  • 13. MOV10L1 binds RNA G-quadruplex in a structure-specific manner and resolves it more efficiently than MOV10
    Zhang, X.#, Yu, L.N.#, Ye, S.S.#, Xie, J., Huang, X.X., Zheng, K.*, and Sun, B.* iScience 17, 36-48. (2019). (Link)
  • 12. Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly
    Gui, X.R., Luo, F., Li, Y.C., Zhou, H., Qin, Z.H., Liu, Z.Y., Gu. J.G., Xie, M.Y., Zhao, K., Dai, B., Shin, W.S., He, J.H., He, L., Jiang. L., Zhao, M.L., Sun, B., Li, X.M., Liu, C.*, and Li, D.* Nature Communications 10, 2006. (2019). (Link)
  • 11. Rescuing replication from barriers: mechanistic insights from single-molecule studies
    Sun, B.* Molecular and Cellular Biology 39, e00576-18. (2019). (Link)
  • 10. Real-time observation of nucleoplasmin-mediated DNA decondensation and condensation reveals its specific functions as a chaperone
    Huo, X.M.#, Meng, L.F.#, Jiang, T., Li, M., Sun, F.Z., Sun, B.*, and Li, J.K.* Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1861, 743-751. (2018). (Link)
  • 9. Helicase promotes replication re-initiating from an RNA transcript
    Sun, B.*, Singh, A., Sultana, S., Inman, J.T., Patel, S.S., and Wang, M.D.* Nature Communications 9, 2306. (2018). (Link)
  • 8. Single-molecule optical-trapping techniques to study molecular mechanisms of a replisome
    Sun, B. and Wang, M.D.*Methods in Enzymology 582, 55-84. (2017). (Link)
  • 7. Single-molecule perspectives on helicase mechanisms and functions
    Sun, B. and Wang, M.D.*Critical Reviews in Biochemistry and Molecular Biology 51, 15-25. (2016). (Link)
  • 6. T7 replisome directly overcomes DNA damage
    Sun, B., Pandey, M., Inman, J.T., Yang, Y., Kashlev, M., Patel, S.S., and Wang, M.D.* Nature Communications 6, 10260. (2015). (Link)
  • 5. ATP-induced helicase slippage reveals highly coordinated subunits
    Sun, B.#, Johnson, D.S.#, Patel, G., Smith, B.Y., Pandey, M., Patel, S.S.*, and Wang, M.D.* Nature 478, 132-135. (2011). (Link)
  • 4. A257T linker region mutant of T7 helicase-primase protein is defective in DNA loading and rescued by T7 DNA polymerase
    Patel, G., Johnson, D.S., Sun, B., Pandey, M., Yu, X., Egelman, E.H., Wang, M.D., and Patel, S.S.* Journal of Biological Chemistry 286, 20490-20499. (2011). (Link)
  • 3. Impediment of E. coli UvrD by DNA-destabilizing force reveals a strained-inchworm mechanism of DNA unwinding
    Sun, B., Wei, K.J., Zhang, B., Zhang, X.H., Dou, S.X., Li, M.*, and Xi, X.G.* The EMBO Journal 27, 3279-3287. (2008). (Link)
  • 2. An improved single molecule manipulation apparatus and its applications
    Wang, X.L., Zhang, X.H., Wei, K.J., Sun, B., and Li, M.*Acta Physica Sinica 57, 3905-3910. (2008). (Link)
  • 1. Single molecule manipulation and single molecule biophysics
    Ran, S.Y., Sun, B., and Li, M.*Physics 36, 228-235. (2007). (Link)